Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Endocrinol (Lausanne) ; 12: 656831, 2021.
Article En | MEDLINE | ID: mdl-33953699

Background: The metabolic syndrome (MetS) is correlated with disorders of the reproductive system, such as the polycystic ovary syndrome (PCOS). While consumption of a diet rich in carbohydrates is linked to the development of MetS, it is still unclear if this diet leads to ovarian dysfunction and PCOS. Objectives: We investigated the influence of a high-sucrose diet (HSD) on the ovarian milieu of Wistar rats and studied the correlation between high consumption of sugary drinks and the prevalence of PCOS in women. Methods: Wistar rats were given a standard laboratory diet (CTR, 10% sucrose, n = 8) or HSD (HSD, 25% sucrose, n = 8) from postnatal day 21 to 120. Animals were evaluated weekly to calculate food intake, feed efficiency and weight gain. Both onset of puberty and estrous cycle were monitored. Metabolic serum biochemistry, organ morphometry and ovarian histology were performed upon euthanasia. In parallel, a fixed-effects multiple linear regression analysis was performed using data from Brazilian states (459 state-year observations) to test the correlation between the consumption of sugar-sweetened beverages (surrogate for HSD intake) and the prevalence of PCOS (surrogate for ovarian dysfunction). Results: HSD animals showed increased adipose tissue accumulation, hyperglycaemia and insulin resistance when compared to CTR. Interestingly HSD rats also entered puberty earlier than CTR. Moreover, ovaries from HSD animals had an increased number of atretic antral follicles and cystic follicles, which were correlated with the hypertrophy of periovarian adipocytes. Finally, there was a positive correlation between the intake of sugary drinks and prevalence of PCOS in women of reproductive age. Conclusions: HSD ingestion leads to ovarian dysfunction in rats and could be correlated with PCOS in women, suggesting these alterations could lead to public health issues. Therefore, we reinforce the deleterious impact of HSD to the ovarian system and suggest that the reduction of added sugars intake could be beneficial to ovarian health.


Dietary Sucrose/toxicity , Estrous Cycle , Metabolic Syndrome/pathology , Ovary/pathology , Polycystic Ovary Syndrome/pathology , Sexual Maturation , Animals , Body Weight , Female , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Ovary/drug effects , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Rats , Rats, Wistar
2.
J Nutr Biochem ; 62: 155-166, 2018 12.
Article En | MEDLINE | ID: mdl-30300835

Childhood consumption of added sugars, such as sucrose, has been associated to increased risk of metabolic syndrome (MetS) and nonalcoholic fatty liver disease (NAFLD). Although the mechanisms underlying NAFLD onset are incompletely defined, recent evidence has proposed a role for the endoplasmic reticulum (ER) stress. Thus, the present study sought to investigate the metabolic outcomes of high-sucrose intake on weaned Swiss mice fed a 25% sucrose diet for 30, 60 and 90 days in comparison to regular chow-fed controls. High-sucrose feeding promoted progressive metabolic and oxidative disturbances, starting from fasting and fed hyperglycemia, hyperinsulinemia, glucose intolerance and increased adiposity at 30-days; passing by insulin resistance, hypertriglyceridemia and NAFLD onset at 60 days; until late hepatic oxidative damage at 90 days. In parallel, assessment of transcriptional and/or translational levels of de novo lipogenesis (DNL) and ER stress markers showed up-regulation of both fatty acid synthesis (ChREBP and SCD1) and oxidation (PPARα and CPT-1α), as well as overexpression of unfolded protein response sensors (IRE1α, PERK and ATF6), chaperones (GRP78 and PDIA1) and antioxidant defense (NRF2) genes at 30 days. At 60 days, fatty acid oxidation genes were down-regulated, and ER stress switched over toward a proapoptotic pattern via up-regulation of BAK protein and CHOP gene levels. Finally, down-regulation of both NRF2 and CPT-1α protein levels led to late up-regulation of SREBP-1c and exponential raise of fatty acids synthesis. In conclusion, our study originally demonstrates a temporal relationship between DNL and ER stress pathways toward MetS and NAFLD development on weaned rats fed a high-sucrose diet.


Endoplasmic Reticulum Stress/drug effects , Lipogenesis/drug effects , Metabolic Syndrome/etiology , Sucrose/adverse effects , Animals , Biomarkers/metabolism , Diet/adverse effects , Down-Regulation/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/physiology , Lipogenesis/physiology , Liver/drug effects , Liver/metabolism , Male , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Time Factors , Weaning
3.
J Endocrinol ; 229(2): 61-72, 2016 05.
Article En | MEDLINE | ID: mdl-26952035

Obesity and metabolic syndrome are the common causes of reproductive and fertility disorders in women. In particular, polycystic ovary syndrome, which is clinically characterized by hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, has been increasingly associated with metabolic disorders. However, given the broad interplay between metabolic and reproductive functions, this remains a field of intense research. In this study, we investigated the effect of monosodium l-glutamate (MSG)-induced obesity on reproductive biology of female rats. Newborn female rats were subcutaneously injected with MSG (4g/kg/day) or equiosmolar saline (CTR) each 2 days up to postnatal day (pnd) 10. On pnd 60, estrous cycle was evaluated using vaginal smears twice a day for 15 days, which showed MSG rats to be oligocyclic. Thereafter, animals were killed on estrous phase for blood and tissue collection. MSG rats had increased body mass, accumulation of retroperitoneal and visceral fat pads, and visceral adipocyte hypertrophy compared with CTR rats. MSG rats were also dyslipidemic and hyperinsulinemic but were normoglycemic and normoandrogenic. Ovarian morphology analysis showed that MSG rats had a two-fold decrease in oocyte count but a six-fold increase on ovarian follicular cysts, along with a higher number of total primordial and atretic follicles. Moreover, MSG rats had a four-fold increase in anti-Müllerian hormone immunohistochemical staining on antral follicles. Taken together, data presented here characterize MSG obesity as a unique model to study the metabolic pathways underlying reproductive disorders in the absence of overactivated hypothalamic-pituitary-gonadal axis.


Obesity/chemically induced , Obesity/physiopathology , Sodium Glutamate/toxicity , Androgens/metabolism , Animals , Animals, Newborn , Anti-Mullerian Hormone/metabolism , Disease Models, Animal , Female , Hyperinsulinism/chemically induced , Hyperinsulinism/physiopathology , Metabolic Networks and Pathways/drug effects , Metabolic Syndrome/chemically induced , Metabolic Syndrome/physiopathology , Obesity/pathology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/physiopathology , Rats , Rats, Wistar , Reproduction/drug effects
...